Locality of Connective Constants, Ii. Cayley Graphs

نویسندگان

  • GEOFFREY R. GRIMMETT
  • ZHONGYANG LI
چکیده

The connective constant μ(G) of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. In earlier work of Grimmett and Li, a locality theorem was proved for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. A condition of the theorem was that the graphs support so-called ‘graph height functions’. When the graphs are Cayley graphs of infinite, finitely generated groups, there is a special type of graph height function termed here a ‘group height function’. A necessary and sufficient condition for the existence of a group height function is presented, and may be applied in the context of the bridge constant, and of the locality of connective constants for Cayley graphs. Locality may thereby be established for a variety of infinite groups including those with strictly positive deficiency. It is proved that a large class of transitive graphs (and hence Cayley graphs) support graph height functions that are in addition harmonic on the graph. This extends an earlier constructive proof of Grimmett and Li, but subject to an additional condition of unimodularity which is benign in the context of Cayley graphs. It implies the existence of graph height functions for finitely generated solvable groups. Group height functions, as well as the graph height functions of the previous paragraph, are non-constant harmonic functions with linear growth and an additional property of having periodic differences. The existence of such functions on Cayley graphs is a topic of interest beyond their applications in the theory of self-avoiding walks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-avoiding Walks and Connective Constants

The connective constant μ(G) of a quasi-transitive graph G is the asymptotic growth rate of the number of selfavoiding walks (SAWs) on G from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph G. • We present upper and lower bounds for μ in terms of the vertex-degree and girth of a transitive graph. • We discuss the qu...

متن کامل

Strict Inequalities for Connective Constants of Transitive Graphs

The connective constant of a graph is the exponential growth rate of the number of self-avoiding walks starting at a given vertex. Strict inequalities are proved for connective constants of vertex-transitive graphs. First, the connective constant decreases strictly when the graph is replaced by a nontrivial quotient graph. Second, the connective constant increases strictly when a quasitransitiv...

متن کامل

Locality of Connective Constants, I. Transitive Graphs

The connective constant μ(G) of a quasi-transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. We prove a locality theorem for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. The proof exploits a generalized bridge decomposition of self-a...

متن کامل

Self-Avoiding Walks and Amenability

The connective constant μ(G) of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called ‘unimodular graph height functions’, namely: (i) whether μ(G) is a loc...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014